63 research outputs found

    Modelling and validation of off-road vehicle ride dynamics

    Get PDF
    Increasing concerns on human driver comfort/health and emerging demands on suspension systems for off-road vehicles call for an effective and efficient off-road vehicle ride dynamics model. This study devotes both analytical and experimental efforts in developing a comprehensive off-road vehicle ride dynamics model. A three-dimensional tire model is formulated to characterize tire–terrain interactions along all the three translational axes. The random roughness properties of the two parallel tracks of terrain profiles are further synthesized considering equivalent undeformable terrain and a coherence function between the two tracks. The terrain roughness model, derived from the field-measured responses of a conventional forestry skidder, was considered for the synthesis. The simulation results of the suspended and unsuspended vehicle models are derived in terms of acceleration PSD, and weighted and unweighted rms acceleration along the different axes at the driver seat location. Comparisons of the model responses with the measured data revealed that the proposed model can yield reasonably good predictions of the ride responses along the translational as well as rotational axes for both the conventional and suspended vehicles. The developed off-road vehicle ride dynamics model could serve as an effective and efficient tool for predicting vehicle ride vibrations, to seek designs of primary and secondary suspensions, and to evaluate the roles of various operating conditions

    Kineto-dynamic optimization of seat-suspension

    Get PDF
    A kineto-dynamic model of a cross-linkage air seat-suspension system is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics. A two-stage optimization methodology is proposed to derive vehicle-specific optimal designs considering different classes of earthmoving vehicles. The results show that optimal air spring coordinates can yield nearly constant natural frequency during the deflection cycle, irrespective of the seated body mass and driver-selected seated height. Vehicle-specific optimal damping characteristics, identified in the second stage, provided substantial reductions in seat effective amplitude transmissibility (SEAT) and vibration dose values (VDV) for all classes of earthmoving vehicles considered in the study. The proposed kineto-dynamic model and optimization method could thus serve as an important tool for designing vehicle-specific suspension seats

    Relative ride vibration of off-road vehicles with front-, rear- and both axles torsio-elastic suspension

    Get PDF
    Wheeled off-road vehicles are known to transmit higher magnitudes of low frequency whole-body vibration (WBV), which have been associated with an array of health disorders among human drivers apart from fatigue and reduced work rate. In this study, the ride performance potentials of a torsio-elastic suspension employed in the front-, rear-, and both axles of an off-road vehicle are investigated. A three-dimensional ride dynamic model of the vehicle is formulated and analyzed under excitations arising from correlated random elevations of two terrain tracks. The model validity is demonstrated on the basis of reported field measured data of a rear-suspended frame-steered articulated forestry vehicle. The ride responses are evaluated in terms of unweighted and weighted root mean square (rms) accelerations along the translational and rotational axes near the driver seat. The results show that fully-suspended vehicle can yield substantial reductions in vibration along all the axes, and suspension in the axle in the proximity of driver cabin is relatively more effective in limited the WBV exposure. It is further shown that the linkage suspension helps preserve roll stability while providing adequate ride performance

    Optimum design of a partially-treated MR-fluid sandwich plate

    Get PDF
    The present study concerns with dynamic characterization and optimal design of a partially treated magneto-rheological (MR) sandwich plate. An aluminum sandwich plate, partially treated with MR fluid (MRF 132DG) was fabricated for dynamic characterization in the laboratory. The MR-filled cavity in the plate was subjected to a uniform magnetic flux using two permanent magnets located at top and bottom of the structure. The dynamic response characteristics of the sandwich plate were experimentally obtained under harmonic force excitations. A finite element model of the partially-treated MR sandwich plate was developed using classical plate theory considering the effect of slippage between the top and bottom layers. The validity of the finite element model was demonstrated by comparing the theoretical results with those of the experiment. An optimization problem was subsequently formulated and solved using genetic algorithm (GA) to identify optimal locations for the MR fluid treatments for realizing maximum variations in stiffness and damping properties of the structure corresponding to the lower three modes of flexural vibration, individually and simultaneously, in response to the applied magnetic field. The effect of shear deformation on the vibration properties of the partially treated sandwich plate was particularly highlighted. The results suggest that the MR fluid treatments can significantly alter the stiffness and damping properties of the sandwich structure under noticeable shear strain, while a partial treatment could yield the changes in stiffness and damping comparable to those of a fully-treated plate

    Hydraulic damping nonlinearity of a compact hydro-pneumatic suspension considering gas-oil emulsion

    Get PDF
    Hydro-pneumatic suspension (HPS) systems could attenuate broad-frequency-range vibration mainly via the nonlinear hydraulic damping property. While the strut design with shared gas-oil chamber leads to gas-oil emulsion within strut chambers which intricately affects the fluid flows between the coupled chambers and thus the damping force. This study investigated the temperature- and frequency-dependent hydraulic damping properties of a compact hydro-pneumatic suspension strut, in terms of the flow discharge coefficients. A laboratory experiment was performed at nearly-constant strut temperature of 30, 40 and 50 °C, in the frequency range of 0.5-8 Hz. The obtained experimental data are used to identify the discharge coefficients of the emulsion flow across bleed orifices and check valves, which determine the damping property of the considered strut. An analytical model is established, and the simulation results obtained under different strut temperature and excitation frequencies showed reasonably good agreements with the experimental data. The results suggested greater discharge coefficient of the bleed orifice than that of the check valve, which might be due to the relatively complex structure of the check valves. Greater excitation frequency was shown to decrease the discharge coefficients in a nonlinear manner, irrespective of the strut temperature. Greater strut temperature, however, leaded to greater discharge coefficient of the check valve. Increasing the excitation frequency from 0.5 Hz to 8 Hz resulted in nearly 14 % decrease in the discharge coefficient of check valve at a constant strut temperature of 50 °C

    On the properties of magnetorheological elastomers in shear mode: Design, fabrication and characterization

    Get PDF
    Magnetorheological elastomers (MREs) are novel class of magneto-active materials comprised of micron-sized ferromagnetic particles impregnated into an elastomeric matrix, which exhibit variable stiffness and damping properties in a reversible manner under the application of an external magnetic field. Characterization of highly complex behavior of these active composites is a fundamental necessity to design adaptive devices based on the MREs. This study is mainly concerned with in-depth experimental characterizations of static and dynamic properties of different types of MREs using methods defined in related standards. For this purpose, six different types of MRE samples with varying contents of rubber matrix and ferromagnetic particles were fabricated. The static characteristics of the samples were experimentally evaluated in shear mode as a function of the magnetic flux density. The particular MRE sample with highest iron particles content (40% volume fraction) was chosen for subsequent dynamic characterizations under broad ranges shear strain amplitude (2.5–20%), excitation frequency (0.1–50 Hz) and applied magnetic flux densities (0–450 mT). The results revealed nearly 1672% increase in the MRE storage modulus under the application of a magnetic flux of 450 mT, which confirms the potential of the novel fabricated MRE for control of vibration and noise in various engineering applications

    Optimal vibration control of beams with total and partial MR-fluid treatments

    Get PDF
    This paper presents the synthesis of full state and limited state flexible mode shape (FMS) based controllers for the suppression of transient and forced vibration of a cantilever beam with full and partial magnetorheological (MR) fluid treatments. The governing equations of motion of the three layer MR sandwich beam are expressed in the state variable form comprising a function of the control magnetic field. An optimal control strategy based on the linear quadratic regulator (LQR) and a full state dynamic observer is formulated to suppress the vibration of the beam under limited magnetic field intensity. The lower flexural mode shapes of the passive beam are used to obtain estimates of the deflection states so as to formulate a limited state LQR control synthesis. The transient and forced vibration control performances of both the full state observer-based and the limited state FMS-based LQR control strategies are evaluated for the fully as well as partially treated MR-fluid sandwich beams. The results show that the full state observer-based LQR control can substantially reduce the tip deflection responses and the settling time of free vibration oscillations. The limited state LQR control based on the mode shapes effectively adapts to the deflections of the closed loop beam and thus yields vibration attenuation performance comparable to that of the full state LQR controller. The partially treated beam with MR-fluid concentration near the free end also yields vibration responses comparable to the fully treated beam, while the natural frequencies of the partially treated beams are considerably higher
    • …
    corecore